
Introduction to Tactical Generation with HPSG

Woodley Packard

University of Washington

March 5, 2013

Introduction

Natural Language Generation: the task of automatically producing

natural language utterances

◮ Tactical NLG: deciding how to convey a particular meaning

◮ (Strategic NLG: deciding what meaning to convey, when, to
whom)

This NLP task dichotomy can be traced at least as far back as
(McKeown 1982).

Tactical NLG

How to convey a particular meaning ... what do we mean by a
meaning?

◮ Fixed shape: result of a database query or a simulation

◮ Unpredictable shape: general semantic representation, e.g.
minimal recursion semantics [Copestake et al., 2005]

Fixed shaped meanings

Example: a weather station predicts the temperature for the next
week.

◮ “meaning” to be conveyed: values or trend of those
predictions

◮ possible solution, templates, e.g.:
“Temperatures are expected to <<rise or fall>>, reaching
<<extreme value>> on <<day>>.”

◮ Easy to produce a well-formed result; hard to make it sound
both natural and unrepeatitive.

Logical forms as input

MRS :
(

TOP = h1,
{

h15 : asleep(x11) ∧ h1 : think(x3, h8)

∧the(x3, h2) ∧ the(x11, h4) ∧ h4 : dog(x11)

∧h2 : cat(x3)
}

,
{

h8 =q h15
}

)

Approximately equivalent to three predicate logics:

Option 1 : ∃̃x3.cat(x3) : think(x3, ∃̃x11.dog(x11) : asleep(x11))

Option 2 : ∃̃x3.cat(x3) : ∃̃x11.dog(x11) : think(x3, asleep(x11))

Option 3 : ∃̃x11.dog(x11) : ∃̃x3.cat(x3) : think(x3, asleep(x11))

... which all mean the same thing (I’m using ∃̃ to denote this
somewhat slippery “the” quantifier).

Logical forms as input

Given an MRS m and a grammar g , produce:

1. All strings s where g(s) = m.
The cat thought the dog was asleep.

The cat thought that the dog was asleep.

2. What about g(s) → m? Sometimes, e.g. to let the input
underspecify certain pieces of information. But no new EPs.
The cats thought that the dogs were sleeping.

3. What about m → g(s)? Not good enough.
The cat thought.

Briefly: Motivation

In real life, what are m and s?

1. Paraphrasing: m produced by parsing another string

2. Machine translation: m produced by parsing a string in
another language

3. Summarization: m is a patchwork from parses of lots of
sentences

4. “Deep” template-based NLG: m is mostly static, with a few
parts filled in from a DB query / weather station

But how?

1. We know how to parse:
i.e. given an input string s and a grammar g , compute:

m = g(s)

2. We want to compute: {s ∈ Σ∗ : m ∈ g(s)}.

Idea 1: Brute Force

R = {}
for s ∈ Σ∗

do

compute g(s)
if m ∈ g(s) then

R = R ∪ {s}
end if

end for

return R

1. Problem: complexity is atrocious (infinite).

2. Limit to at most N letters; |Σ|N strings to parse, each taking
O(N3) time.

3. With Σ = [A− Za− z0− 9.?!], too slow for N > 2 or so.

4. We could generate Hi, but maybe not Bye

Idea 1: Post mortem

Idea 1 searched lots of strings that:

1. weren’t words, e.g.:
Zqf.9f, ooOOf11

2. weren’t grammatical, e.g.
dinosaurs dinosaur dinosaurs dinosaurs dinosaurs

3. weren’t relevant, e.g.
Dinosaurs drink coffee. when we want Dogs chase cats.

Theme: wasting time on irrelevant strings.

Idea 2: Brute Force, improved

R = {}
V = relevant words(m)
for s ∈ V ∗

do

compute g(s)
if m ∈ g(s) then

R = R ∪ {s}
end if

end for

return R

1. Still need to limit infinite search V ∗ to, say, N words.

2. To generate “The cat thought the dog was asleep.”,
minimally need |V | = 6 and N = 7 (in practice, |V | = 13);
67 = 279936 candidate seven-word sentences to parse at 65ms
each; roughly 5 hours.

3. Tractable for modest N, but not fast.

Idea 2: Sidenote on Relevant Words

How do we compute V = relevant words(m)?

1. Any given EP in m can only be produced by a small list of
grammar signs;
straightforward to retrieve all possible grammar signs that
could produce any of the input EPs.

2. That’s not enough; some words are syntactically required but
don’t show up in the logical form at all (e.g. “was” in our
example).

3. Hand-written rules to trigger vacuous lexemes

Idea 2: Post mortem

Idea 2 was a lot better than idea 1, but still wasted time on:

1. ungrammatical strings, e.g.
asleep asleep asleep asleep asleep

2. irrelevant strings, e.g.
The dog thought the cats were dogs.

3. Phrases like ”the cat” and ”the dog was asleep” may be tried
and needlessly reparsed thousands of times as common
substrings of disparate hypotheses.

Idea 3: Dynamic Programming

R = {},C = {},A = {(w ,FS(w))|w ∈ relevant words(m)}
while a = next(A) do

if length(a) > max length then

continue
end if

for (b, r) ∈ C × rules(g) do
if applicable(r , a, b) then

A.add(apply(r , a, b))
end if

if applicable(r , b, a) then
A.add(apply(r , b, a))

end if

end for

C .add(a)
if meaning(a) = m then

print R
end if

end while

Idea 3: Analysis

1. Only grammatical strings are considered → much faster.

2. Don’t have to parse candidates; their meaning is directly
available.

3. Commenting out three lines in ACE to approximate this
algorithm: “The cat thought the dog was asleep.” takes
about 5 minutes, explores 169618 hypotheses.

4. Lots of unnecessary hypotheses are still generated, e.g.:
as though the cat asleep was thinking

5. New idea: a phrase whose meaning is not compatible with the
goal meaning cannot be a constituent in the result. [Shieber,
1988]

Idea 4: Block Some Erroneous Hypotheses

function applicable((rule, a, b)): Boolean
if (rule, a, b) is not unifiable then

return FALSE
end if

m′ = meaning(apply(rule, a, b))
if m′ contradicts m then

return FALSE
else

return TRUE
end if

end function

1. Actual implementation: augment initial hypotheses feature
structures with information from m in such a way that if m′

contradicts m then (rule, a, b) will not be unifiable.

2. Enabling this in ACE: “The cat thought the dog was asleep.”
takes 90 milliseconds, explores 818 hypotheses!

Other Optimizations

“Do not throw paper or other litter on the paths and in the
terrain.” – 14 words, 17 EPs.

1. Idea 4: 23.6 seconds, 28647 hypotheses.

2. With ambiguity packing: 1.8 seconds, 4734 hypotheses.

3. With index accessibility filtering: 0.5 seconds, 2275
hypotheses.

4. See [Carroll and Oepen, 2005] for those optimizations.

5. Modern engines (LKB, AGREE, ACE) deploy all these
optimizations.

6. Generation is frequently faster than parsing!

7. <joke> Maybe we can speed up parsing by enumerating all
MRSes and generating from them! </joke>

Bibliography

J. Carroll and S. Oepen. High efficiency realization for a
wide-coverage unification grammar. Natural Language
Processing–IJCNLP 2005, pages 165–176, 2005.

A. Copestake, D. Flickinger, C. Pollard, and I.A. Sag. Minimal
recursion semantics: An introduction. Research on Language &

Computation, 3(2):281–332, 2005.

Kathleen R McKeown. The text system for natural language
generation: An overview. In Proceedings of the 20th annual

meeting on Association for Computational Linguistics, pages
113–120. Association for Computational Linguistics, 1982.

Stuart M Shieber. A uniform architecture for parsing and
generation. In Proceedings of the 12th conference on

Computational linguistics-Volume 2, pages 614–619. Association
for Computational Linguistics, 1988.

