UW-MRS: Leveraging a Deep Grammar for Robotic Spatial Commands

Linguistic Signal

Take the pink piece and put it on the blue block to the left

of the grey piece.
Lots of variants (crowd-sourced annotations)

Place purple prism on blue block left to the gray prism.
Imperfect grammaticality

move the pink prism on the left side on the gray prism
Inconsistent punctuation and capitalization

move the pink prism on the left side of the gray prism

Woodley Packard — University of Washington

Non-linguistic Signal

Machine-readable context description

Robot Control Language Action
(event:

(action: move)

(entity:

(color: magenta)
(type: prism))
(destination:
(spatial-relation:
(relation: left)
(entity:
(color: gray)
(type: prism)))))

High Precision Approach:

Hand-crafted translation rules from an existing hand-crafted grammar

The English Resource Grammar (ERG)
1s a precision broad coverage grammar of
English, embodying roughly 20 person-
years of work. It employs Minimal
Recursion Semantics to give its analyses
detailed predicate argument structure
and the scopal relationships that can
be accurately ascertained from syntax
alone, while remaining underspecified
with respect to the relative scoping of
quantifiers.

Slight modifications required:

Drop the blue cube.

(INDEX = e, {pron(z), cuben(y),

drop.v_cause(e, z,y),blue a(_,y) })

— enable the (normally undesirable) rule for determinerless NPs
— a couple of new lexemes for square, tile, etc. used as units of measure (drop it

three squares to the left)

Result: ~99% grammar coverage on training data

Step 1:  Parse with the ERG

(MRS1, MRSz,

Output: a list of MRS structures ranked MRSB g eeey

model

Step 2:  Filter out-of-domain analyses

by the ERG’s statistical parse selection MRS N)

(MRS3, MRS7,

Since the ERG is a general-purpose MRS 13, ..
tool, we get some domain-inappropriate MRS N — 2)

readings, e.g. block as a verb.

Step 3:  Translate MRS to RCL

(RCLs3,

Hand-written rules (roughly 1,000 lines RC L 13,

of C) map MRS structures into RCL RC | 20
trees. The MRS is traversed starting RCL ’ ’
from the INDEX, with top-level N - 2)

conjunctions translating to sequence:

elements and main verbs translating to event: elements. Referential
indices (x,y) translate into entity: elements, and modifiers translate into

color:, type:, spatial-relation:, etc.

The required information (except coreference) is all present and

carefully organized in the MRS. Changing the shape of that information

from MRS graphs to RCL statements 1s deterministic and easy.

Step 4:  Validate with the spatial planner

(RCL13,

Candidate RCL statements which are RC |_42>
nonsensical given the spatial context

are rejected (e.g. trying to drop

something when the robot arm 1s not
holding anything, or referencing an

entity that does not exist).

Output; The highest ranked RCL produced by RC |_ 13

the pipeline (if any) 1s the result.

High Coverage Approach:

Berkeley parser with a simple (but lossy) transformation

The Berkeley parser tools can learn

S an LPCFG from collections of phrase
ev(lm: structure trees, and then assign ranked
/\ phrase structure trees to unseen text, all
action: entity: without manual effort.
dr|Op TN The Task 6 training data is a collection
| C/OI({ type: of RCL statements with a partial
drop X blue cube alignment to the underlying text. While
t}|1@ b1|ue Cu|be RCL statements are trees, the terminals

are not 1n one-to-one correspondence
with the tokens of the corresponding utterance; there are deletions (words like
the, which RCL considers to be semantically vacuous) and insertions (e.g. id:
elements and elided pronouns).

Step 1:  Transform the training data to phrase
structure trees. C-I_I-_rl Ce1 )
reez,
Missing words are inserted into the fol- Tr ees
lowing constituent with tag X. Tree 5 )
N
Step 2:  Train an LPCFG using the Berkeley
parser tools. <L PC F G>
Step 3:  Parse an utterance using the LPCFG Tree 1

and the Berkeley parser.

Step 4.  Drop X nodes from the tree and heuris- RC | 1
tically insert missing 1d: elements.

Output; The translation procedure always pro- RC | 1
duces exactly one RCL output.

Unfortunately, time did not permit exporing the usage of the spatial planner as a
filter on an N-best list from the Berkeley parser. This likely would have improved
its precision somewhat, but might have reduced its effectiveness as a completely
robust fallback (since some items might then have received no result at all).

Results

Dev Eval
System P R P R

MRS-only (—SP) || 90.7 | 88.0 | 92.1 | 80.3
MRS-only (+SP) || 954 | 92.2 | 96.1 | 82.4
Robust-only (—SP) || 88.2 | 88.2 | 81.5 | 81.5
Combined (—SP) || 90.8 | 90.8 | 90.5 | 90.5
Combined (+SP) || 95.0 | 95.0 | 92.5 | 92.5
ERG coverage 98.6 91.0

References

Flickinger, D. (2000). On building a more efficient
grammar by exploiting types. Natural Language
Engineering, 6(01), 15-28.

Petrov, S., Barrett, L., Thibaux, R., & Klein, D. (2006).
Learning accurate, compact, and interpretable

After these steps, roughly 3% of training data items receive no RCL translation,
for various reasons. This prompted the investigation of a purely statistical backup
system. The robust design payed off in the formal evaluation, where ERG cover-
age dropped to only 91% (largely due to worse-than-expected vagrant punctuation
marks). Precision remained high for the evaluation phase.

tree annotation. In Proceedings of the 21st Inter-
national Conference on Computational Linguis-
tics and the 44th annual meeting of the Asso-
ciation for Computational Linguistics (pp. 433—

440).



