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Introduction

Consider a point light source in an atmospheric medium. The high-level
approach used by ray-tracers to render this scene is to cast rays through the
volume and calculate the radiance reaching the eye along each ray.

Hence forth let us assume we are considering a single ray. The standard
approach for calculating the radiance along the ray is to estimate the value
of the volume rendering equation:

L =

∫

∞

0
e−

R

t

0
ρ(s)dsS(t)dt

where S(t) represents the sum of the in-scattered light, ρ represents the
density at a point, and the emissivity of the point t on the ray. The most
common algorithm is numerical integration, i.e. to simply march along the
ray, calculate the integrand at each step, and sum the results. The value of
S(t) is however a complex quantity which can be difficult to calculate ex-
actly. One approach is to integrate the incoming radiance over all directions
around the point t and add the emissivity, but this presents a chicken-and-
egg problem: the radiance is exactly what is being computed to begin with.
Therefore, after a certain number of recursive steps like this, an approxima-
tion is typically made by assuming, for example, that the in-scatter is equal
to some constant ambient term. The overall integration process can be quite
costly, since it requires time exponential in the number of scattering steps
that are required.

Low Density Media

In the case of simple atmospheric scattering, the density of the participating
medium is typically extremely low. If the density is constant (i.e. the
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medium is homogeneous), then the volume rendering equation reduces to:

L(x, ω) =

∫

∞

0
e−ρtS(t)dt

Assume further that light is equally likely to be scattered in all directions, i.e.
the phase function is constant. Then we can write S(x) =

∫

S2 ρL(x, ω′)dω′+
ε = ρ

∫

S2 L(x, ω′)dω′ + ε, where ε represents the emissivity at x.
Let us now consider the specific case-at-hand: a light-source in pure air,

at night time. In this case, it is clear by inspecting any photograph that
the radiance in any direction other than that of the light source is at an
order of magnitude less bright than the the direct radiance from the light
source. Since we are considering point-lights, we need to assume they are
”infinitely bright” in some sense, since otherwise they would not produce
any contribution to the final scene. Let the light have brightness density A

(i.e. a 1 × 1 unit square area light would appear as bright as our light if it
had brightness A). Thus we get S(x) ≈ ρ A

r(x)2
, where r(x) represents the

distance from x to the light source. Plugging this into the volume rendering
equation, we get:

L(x, ω) = Aρ

∫

∞

0
e−ρt dt

r(t)2

This is unfortunately not an easy formula to integrate.

Closed Form Approximation

We circumvent this problem by approximating the distance fall-off indepen-
dently from the scattering. This clearly involves the assumption that our
light-source p is close enough that the distance fall-off near p is negligable,
since otherwise the two effects are not independent. In our case this was
an acceptable assumption. Instead of integrating from 0 to ∞, we can as-
sume the ray collides with some surface at distance T . After our separation
assumption, we get:

L ≈ Aρ

∫ T

0

dt

r(t)2
+ e−ρT L(x(t))

where L(x(t)) represents the radiance computed from the distant intersec-
tion point. The term e−ρT is then equivalent to a standard homogeneous
medium ”fog” effect, so we will drop the distant surface term from now on.

The problem is then to compute Aρ
∫ T

0
dt

r(t)2
. We need to define some

coordinates. The relevant points are the location of the light and the line
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of the ray. These together define a 2-dimensional subspace of R
3 (assuming

the light is not on the ray, in which case the brightness should be infinite).
It is convenient to constrain all of our work to the plane R

2. Let us pick
coordinates such that the segment of the ray from parameter 0 to T coincides
with the y axis, from position (0, a) to (0, b). We can pick a translation
compatible with this assumption which puts our light source on the x-axis
at some point (p, 0). Ignoring the constant terms, our integral takes the form
∫ b

a
dy

p2+y2 . This integral is easily conquered using trigonometric substitution.
We obtain the formula:

L ≈ Aρ

[

atan
a

p
− atan

b

p

]

Calculating a, b, p

There are simple formulas for a, b, and p in terms of standard world-space
coordinates. Let P , O, and D be vectors representing the position of the
light, the origin of the ray, and the direction of the ray, respectively. Notice
that lowercase p is just the distance from P to the ray at its closest point,
−a is the distance from O to that point, and b is the distance from the end
of the ray segment to that point. Denote that point by Z. We then get:

Z = O + D (D · (P − O))

p = ||P − Z||, a = −||O − Z||, b = ||O + TD − Z||

More general light sources

Since light obeys the superpositionality principle, we can use this approx-
imation to render glows around arbitrarily shaped light sources by simply
integrating the single-point form over all the points on a linear or area light
source. Monte-Carlo integration or uniform stepping both work. The Monte-
Carlo method tends to introduce undesirable noise in the otherwise smooth
atmosphere, although it will converge to the correct average value more
quickly. We chose to use the uniform stepping approach, since it causes ex-
tremely low variance in the final image, even though it introduces some bias
since it doesn’t sample all points of large light source. This bias is arbitrar-
ily small compared to the error introduced through the many assumptions
that were made to derive the approximation, so the smooth appearance
outweighed the benifits of Monte Carlo for our purposes.

The resulting images look quite convincing. The size of the glow is
controllable either by the brightness of the light or by the density ρ.
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